The Little Military Drone that Could

We hear all around us about the major breakthroughs that await just around the bend: of miraculous cures for cancer, of amazing feats of genetic engineering, of robots that will soon take over the job market. And yet, underneath all the hubbub, there lurk the little stories – the occasional bizarre occurrences that indicate the kind of world we’re going into. One of those recent tales happened at the beginning of this year, and it can provide a few hints about the future. I call it – The Tale of the Little Drone that Could.

Our story begins towards the end of January 2017, when said little drone was launched at Southern Arizona as part of a simple exercise. The drone was part of the Shadow RQ-7Bv2 series, but we’ll just call it Shady from now on. Drones like Shady are usually being used for surveillance by the US army, and should not stray more than 77 miles (120 km) away from their ground-based control station. But Shady had other plans in the mind it didn’t have: as soon as it was launched, all communications were lost between the drone and the control station.

shadow uav.jpg
Shady the drone. Source: Department of Defense

Other, more primitive drones, would probably have crashed at around this stage, but Shady was a special drone indeed. You see, Shadow drones enjoy a high level of autonomy. In simpler words, they can stay in the air and keep on performing their mission even if they lose their connection with the operator. The only issue was that Shady didn’t know what its mission was. And as the confused operators on the ground realized at that moment – nobody really had any idea what it was about to do.

Autonomous aerial vehicles are usually programmed to perform certain tasks when they lose communication with their operators. Emergency systems are immediately activated as soon as the drone realizes that it’s all alone, up there in the sky. Some of them circle above a certain point until radio connection is reestablished. Others attempt to land straight away on the ground, or try to return to the point from which they were launched. This, at least, is what the emergency systems should be doing. Except that in Shady’s case, a malfunction happened, and they didn’t.

Or maybe they did.

Some believe that Shady’s memory accidentally contained the coordinates of its former home in a military base in Washington state, and valiantly attempted to come back home. Or maybe it didn’t. These are, obviously, just speculations. It’s entirely possible that the emergency systems simply failed to jump into action, and Shady just kept sailing up in the sky, flying towards the unknown.

Be that as it may, our brave (at least in the sense that it felt no fear) little drone left its frustrated operators behind and headed north. It flew up on the strong winds of that day, and sailed over forests and Native American reservations. Throughout its flight, the authorities kept track over the drone by radar, but after five hours it reached the Rocky Mountains. It should not have been able to pass them, and since the military lost track of its radar signature at that point, everyone just assumed Shady crashed down.

But it didn’t.

Instead, Shady rose higher up in the air, to a height of 12,000 feet (4,000 meters), and glided up and above the Rocky Mountains, in environmental conditions it was not designed for and at distances it was never meant to be employed in. Nonetheless, it kept on buzzing north, undeterred, in a 632 miles journey, until it crashed near Denver. We don’t know the reason for the crash yet, but it’s likely that Shady simply ran out of fuel at about that point.

rocky_mountains_sml.jpg
The Rocky Mountains. Shady crossed them too.

And that is the tale of Shady, the little drone that never thought it could – mainly since it doesn’t have any thinking capabilities at all – but went the distance anyway.

 

What Does It All Mean?

Shady is just one autonomous robot out of many. Autonomous robots, even limited ones, can perform certain tasks with minimal involvement by a human operator. Shady’s tale is simply a result of a bug in the robot’s operation system. There’s nothing strange in that by itself, since we discover bugs in practically every program we use: the Word program I’m using to write this post occasionally (and rarely, fortunately) gets stuck, or even starts deleting letters and words by itself, for example. These bugs are annoying, but we realize that they’re practically inevitable in programs that are as complex as the ones we use today.

Well, Shady had a bug as well. The only difference between Word and Shady is that the second is a military drone worth $1.5 million USD, and the bug caused it to cross three states and the Rocky Mountains with no human supervision. It can be safely said that we’re all lucky that Shady is normally only used for surveillance, and is thus unarmed. But Shady’s less innocent cousin, the Predator drone, is also being used to attack military targets on the ground, and is thus equipped with two Hellfire anti-tank missiles and with six Griffin Air-to-surface missiles.

PredatorFire.png
A Predator drone firing away. 

I rather suspect that we would be less amused by this episode, if one of the armed Predators were to take Shady’s place and sail across America with nobody knowing where it’s going to, or what it’s planning to do once it gets there.

 

Robots and Urges

I’m sure that the emotionally laden story in the beginning of this post has made some of you laugh, and for a very good reason. Robots have no will of their own. They have no thoughts or self-consciousness. The sophisticated autonomous robots of the present, though, exhibit “urges”. The programmers assimilate into the robots certain urges, which are activated in pre-defined ways.

In many ways, autonomous robots resemble insects. Both are conditioned – by programming or by the structure of their simple neural systems – to act in certain ways, in certain situations. From that viewpoint, insects and autonomous robots both have urges. And while insects are quite complex organisms, they have bugs as well – which is the reason that mosquitos keep flying into the light of electric traps in the night. Their simple urges are incapable of dealing with the new demands placed by modern environment. And if insects can experience bugs in unexpected environments, how much more so for autonomous robots?

Shady’s tale shows what happens when a robot obeys the wrong kind of urges. Such bugs are inevitable in any complex system, but their impact could be disastrous when they occur in autonomous robots – especially of the armed variety that can be found in the battlefield.

 

Scared? Take Action!

If this revelation scares you as well, you may want to sign the open letter that the Future of Life Institute released around a year and a half ago, against the use of autonomous weapons in war. You won’t be alone out there: more than a thousand AI researchers have already signed that letter.

Will governments be deterred from employing autonomous robots in war? I highly doubt that. We failed to stop even the potentially world-shattering nuclear proliferation, so putting a halt to robotic proliferation doesn’t seem likely. But at least when the next Shady or Freddy the Predator get lost next time, you’ll be able to shake your head in disappointment and mention that you just knew that would happen, that you warned everyone in advance, and nobody listened to you.

And when that happens, you’ll finally know what being a futurist feels like.

 

 

 

The Flying Taxis Are On Their Way

A while ago I’ve written in this blog about flying cars, and how we should start seeing them in our sky en masse towards 2035. It’s always nice to check on such forecasts and see how they’re progressing along and are reinforced by recent events. So here’s an update, composed of two recent news from April: one of them is basically an eye candy, while the other could be a serious indicator that flying cars are afoot (pun fully intended).

 

The Eye Candy

Let’s open with the pretty and shiny stuff. It turns out an aerial innovator has just flown his own invention, the Flyboard Air, a whooping distance of 2,252 meters. He basically smashed through the old record of 275 meters, going at a height of 30 meters above water, at a top speed of around 70 km/h. That’s an impressive achievement!

Unfortunately, it doesn’t mean anything for a future of flying cars.

The main reason for my lack of enthusiasm is that the hoverboard is powered by jet fuel – A1 kerosene carried on the user’s back. As long as flying cars are powered by conventional fossil fuels, they won’t find their way into common use. Flying simply takes too much energy, and fossil fuels are too expensive and harmful to the environment to be used to power such wasteful activity. The only flying cars that have a chance to succeed are ones that operate on electricity, and that’s only if we assume that electricity is about to become abundant due to the exponential rise in solar energy use.

So this is probably just another pretty invention, but when such inventions appear on the market one after the other, one starts to see a trend. You can’t ignore the fact that aerial drones capable of carrying a human passenger begin to appear more and more on the news. Will all these innovations lead to an actual flying taxi service? Only if the two conditions I specified in the original post about flying cars come true: they need to be electric, and they need to be autonomous so that you don’t have an expensive (and prone to mistakes) human pilot.

 

The Flying Taxis of the Future

In the last two months, exciting things have happened for e-volo: the manufacturer of the world’s first certified Multicopter (i.e. a helicopter with multiple rotors).

amp.enews.airtaxia.jpg
First manned flight with Alexander Zosel. Source: ASM International

The Multicopter has received a permit to fly from the German authorities in February 2016. The certified Multicopter’s first manned flight took place at the end of March, and ended with absolutely no issues. The pilot controlled the vehicle easily with a single joystick, and the Multicopter was stable and autonomous enough to retain its position automatically even when the pilot released his hand from the joystick.

 

The vehicle can reach a speed of up to 100 km/h, with 18 rotors powered by nine independent batteries, and a 450 kg take-off weight. The large number of rotors and batteries means that even if one of them fails, the Multicopter can still stay high in the air. Since the Multicopter relies on electric motors, it is one of the top candidates in the race to become the world’s first air taxi.

Which is exactly what e-volo, the company behind the Multicopter, is trying to do.

According to ASM International, e-volo is looking to create a new market of air taxi services. In the short term, they plan to use the personal vehicles on certain predetermined routes, where there will be no chance for collision. In the medium term, however, they are already thinking about providing the vehicles with autonomous capabilities, so that they will be able to go any way the passenger chooses. The passenger will pick the destination, and the AI will make sure that the air taxi brings him there safely.

 

Conclusions

There are encouraging indicators that air taxi services will indeed become reality by 2035, but the obstacles are still out there. We still need to develop more reliable personal aircrafts with improved autonomous functions. Also, electric flying vehicles will still require an abundance of energy for mass-scale use, and such energy will have to come from an abundant source: the Sun. That means we’ll have to keep an eye for developments in solar energy harvesting as well. Luckily, solar energy is moving forward at an exponential rate.

So, if everything comes together just right, I still stand by my original forecast: flying taxis by 2035 it is!

Forecast: Flying Cars by 2035

Whenever a futurist talks about the future and lays out all the dazzling wealth technological advancements hold in store for us, there is one question that is always asked by the audience.

“Where is that flying car you promised me?”

Well, we may be drawing near to a future of flying cars. While the road to that future may still be long and arduous, I’m willing to forecast that in twenty years from now we will have flying cars for use by civilians – but only if three technological and societal conditions will be fulfilled by that time.

In order to understand these conditions, let us first examine briefly the history of flying cars, and understand the reasons behind their absence in the present.

 

Flying Cars from the Past

Surprising as it may be, the concept of flying cars has been around far longer than the Back to the Future trilogy. Henry Ford himself had produced in 1926 a rudimentary and experimental ‘flying car’, although really it was more of a mini-airplane for the average American consumer. Despite the excitement from the public, the idea crashed and burned in two years, together with the prototype and its test pilot.

skycar10.jpg
One of the forgotten historical flying cars. A prototype of the Ave Mizar.

Since the 1920s, it seems like innovators and inventors came up with flying cars almost once a decade. You can see pictures of some of these cars in Popular Mechanics’ gallery. Some crashed and burned, in the tradition set by Ford. Others managed to soar sky high. None actually made it to mass production, for two main reasons:

  • Extremely wasteful: flying cars are extremely wasteful in terms of fuel consumption. Their energy efficiency is abysmal when compared to that of high-altitude and high-speed airplanes.
  • Extremely unsafe: let’s be honest for a moment, OK? You give people cars that can drive in what is essentially a one-dimensional road, and what do they do? They make traffic accidents. What do you think would happen if you gave everyone the ability to drive a car in three dimensions? Crash, crash and burn all over again. For flying cars to become widely used in society, everyone needs to take flying lessons. Good luck with that.

These two limitations together made sure that flying cars to the masses were left a fantasy – and still largely are. In fact, I would go as far as saying that any new concept or prototype of a flying car that does not take these challenges into account, is only presented to the public as a ‘flying car’ as a publicity stunt.

But now, things are beginning to change, because of three trends that together will provide answers to the main barriers standing in the way of flying cars.

 

The Three Trends that will Enable Flying Cars

There are three trends that, combined, will enable the use of flying cars by the public within twenty years.

First Trend: Massive Improvement in Aerial Drones Capabilities

If you visit your city’s playgrounds, you may find children there having fun flying drones around. The drones they’re using – which often cost less than $200 – would’ve considered highly sophisticated weapons of war just twenty years ago, and would’ve been sold by arms manufactures at prices in the order of millions of dollars.

bendboydrone.jpg
14 years old Morgan Tien with his drone. Source: Bend Bulletin

Dr. Peter Diamandis, innovator, billionaire and futurist, has written in 2014 about the massive improvement in capabilities of aerial drones. Briefly, current-day drones are a product of exponential improvement in computing elements (inertial measurement units), communications (GPS receivers and system), and even sensors (digital cameras). All of the above – at their current sizes and prices – would not have been available even ten years ago.

Aerial drones are important for many reasons, not least because they may yet serve as the basis for a flying car. Innovators, makers and even firms today are beginning to strap together several drones, and turn them into a flying platform that can carry individuals around.

The most striking example of this kind comes from a Canadian inventor who has recently flown 275 meters on a drone platform he has basically fashioned in his garage.

Another, a more cumbersome version of Human-Transportation Drones (Let’s call them HTD from now on, shall we?) was demonstrated this week at the Las Vegas Convention Center. It is essentially a tiny helicopter with four double-propellers attached, much like a large drone. It has place for just one traveler, and can fly up to 23 minutes according to the manufacturers. Most importantly, the Ehang 184 as it’s called is supposed to be autonomous, which brings us straight to the next trend: the rise of machine intelligence.

ehang-184-aav-passenger-drone-12.jpeg
Ehang 184. Credit: Ehang. Originally found on Gizmag.

Second Trend: Machine Intelligence and Flying Cars

There can be little question that drones will keep on improving in their capabilities. We will improve our understanding of the science and technology behind aerial drones, and develop more efficient tools for aerial travel, including some that will carry people around. But will these tools be available for mass-use?

This is where the safety barrier comes into the picture. You can’t let the ordinary Joe Shmoe control a vehicle like the Ehang 184, or even a light-weight drone platform. Not without teaching them how to fly the thing, which would take a long time to practice, lots of money, and will sharply limit the number of potential users.

This is where machine intelligence comes into the picture.

Autonomous control is virtually a must for publicly usable HTDs. Luckily, machine intelligence is making leaps and bounds forward, with autonomous (driverless) cars travelling the roads even today. If such autonomous systems can function for cars on the roads, why not do the same for drones in the air?

As things currently stand, all aerial drones will have to be controlled at least partly-autonomously, in order to prevent collisions with other drones. NASA is planning a “Traffic Management Convention” for drones, which could include tens of thousands of drones – and much more than that, if the need arises. The next logical step, therefore, is to include future HTDs into this future system, thus taking the control out of the pilot’s hands and transferring it completely to the vehicle and the system controlling it.

If the said system for managing aerial traffic becomes a reality, and assuming that drones capabilities are advanced enough to provide human transportation services, then autonomous HTDs for mass use will not be far behind.

The two last trends have covered the second barrier of inherent unsafety. The third trend I will present now deals with the first barrier of inefficient and wasteful use of energy.

Third Trend: Solar Energy

All small drones rely on electricity to function. Even a larger drone like the Ehang 184 that could be used for human transport, is powered by electricity, and can fly for 23 minutes before requiring a recharge. While 23 minutes may not sound like a lot of time, it’s more than enough for people to ‘hop’ from one side of most cities to the other, as long as there isn’t aerial congestion.

Of course, that’s the situation today. But batteries keep on improving. Elon Musk claims that by 2017, Tesla’s electric cars will have a 600 mile range on a single charge, for example. As batteries improve further, HTDs will be able to stay in the air for even longer periods of time, despite being powered by electricity alone. The adherence to electricity is important since in twenty years from now it is highly likely that we’ll have much cheaper electric energy coming directly from the sun.

Support for this argument comes from the exponential decline in the costs associated with producing and utilizing solar energy. Forty years ago, it would’ve cost about $75 to produce one watt of solar energy. Today the cost is less than a single dollar per watt. And as prices go down, the number of solar panels installation soars sky-high, roughly doubling itself every two years. Worldwide solar capacity in 2014 has been 53 times higher than in 2005.

solar panels.jpg
Credit: Earth Policy Institute / Bloomberg. Originally found on Treehugger.

If the rising trend of solar energy does not grind to a halt sometime in the next decade, then we will obtain much of our electric energy from the sun. We won’t have usable passenger solar airplanes – these need high-energy jet fuel to operate – but we will have solar panels pretty much everywhere: covering the sides and top of every building, and quite possibly every car as well. Buildings would both consume and produce energy. Much of the unneeded energy would be saved in batteries, or almost instantaneously diverted via the smart grid to other spots in the city where it’ll be needed.

If that is the face of the future – and the trends support this view – then HTDs could be an optimal way of transportation in the city of the future. Aerial drones could be deployed on tops of houses and skyscrapers, where they will be constantly charged by solar panels until they need to take a passenger to another house. Such a leap would only take 10-15 minutes, followed by a recharging period of 30 minutes or so. The entire system would operate autonomously – without human control or interference – and be powered by the sun.

 

Conclusions and Forecast for the Future

When can we expect this system to be deployed? Obviously it’s difficult to be certain about the future, particularly in cases where technological trends meet with societal, legal and political barriers to entry. Current culture will find it difficult to accept autonomous vehicles, and Big Fossil Fuel firms are still trying to pretend solar energy isn’t here to stay.

All the same, it seems that HTDs are already rearing their heads, with several inventors working separately to produce them. Their attempts are still extremely hesitant, but every attempt demonstrates the potential in HTDs and their viability for human transportation. I would therefore expect that in the next five years we will see demonstrations of HTDs (not for public use yet) that can carry individuals to a distance of at least one mile, and can be fully charged within one hour by solar panels alone. That is the easy forecast to make.

The more difficult forecast involves the use of autonomous aerial drones, the assimilation of HTDs into an overarching system that controls all the drones in a shared aerial space, and a mass-deployment of HTDs in a city. Each of these achievements needs to be made separately in order to fulfill the larger vision of a flying car to the masses. I am going to take a wild guess here, and suggest that if no Hindenburg-like disaster happens, then we’ll see real flying cars in our cities in twenty years from now – by the year 2035. It is likely that these HTDs will only be able to carry a single individual, and will probably be used more as a ‘flying taxi’ service between buildings to individual businessmen than a full-blown family flying car.

And then, finally, when people ask me where their flying car is, I will be able to provide a simple answer: “It’s parked on the roof.”

Are we Entering the Aerial Age – or the Age of Freedom?

A week ago I covered in this blog the possibility of using aerial drones for terrorist attacks. The following post dealt with the Failure of Myth and covered Causal Layered Analysis (CLA) – a futures studies methodology meant to counter the Failure of Myth and allow us to consider alternative futures radically different from the ones we tend to consider intuitively.

In this blog post I’ll combine insights from both recent posts together, and suggest ways to deal with the terrorism threat posed by aerial drones, in four different layers suggested by CLA: the Litany, the Systemic view, the Worldview, and the Myth layer.

To understand why we have to use such a wide-angle lens for the issue, I would compare the proliferation of aerial drones to another period in history: the transition between the Bronze Age and the Iron Age.

 

From Bronze to Iron

Sometime around 1300 BC, iron smelting was discovered by our ancient forefathers, assumedly in the Anatolia region. The discovery rapidly diffused to many other regions and civilizations, and changed the world forever.

If you ask people why iron weapons are better than bronze ones, they’re likely to answer that iron is simply stronger, lighter and more durable than bronze. However, the truth is that bronze weapons are not much more efficient than iron weapons. The real importance of iron smelting, according to “A Short History of War” by Richard A. Gabriel and Karen S. Metz, is this:

“Iron’s importance rested in the fact that unlike bronze, which required the use of relatively rare tin to manufacture, iron was commonly and widely available almost everywhere… No longer was it only the major powers that could afford enough weapons to equip a large military force. Now almost any state could do it. The result was a dramatic increase in the frequency of war.”

It is easy to imagine political and national leaders using only the first and second layer of CLA – the Litany and the Systemic view – at the transition from the Bronze to the Iron Age. “We should bring these new iron weapons to all our soldiers”, they probably told themselves, “and equip the soldiers with stronger shields that can deflect iron weapons”. Even as they enacted these changes in their armies, the worldview itself shifted, and warfare was vastly transformed because of the large number of civilians who could suddenly wield an iron weapon. Generals who thought that preparing for the change merely meant equipping their soldiers with an iron weapon, found themselves on the battlefield facing armies much larger than their own, because of new conscription models that their opponents had developed.

Such changes in warfare and in the existing worldview could have been realized in advance by utilizing the third and fourth layers of CLA – the Worldview and the Myth.

Aerial drones are similar to Iron Age weapons in that they are proliferating rapidly. They can be built or purchased at ridiculously low prices, by practically everyone. In the past, only the largest and most technologically-sophisticated governments could afford to employ aerial drones. Nowadays, every child has them. In other words, the world itself is turning against everything we thought we knew about the possession and use of unmanned aerial vehicles. Such dramatic change – that our descendants may yet come to call The Aerial Age when they look back in history – forces us to rethink everything we knew about the world. We must, in short, analyze the issue from a wide-angle view, with an emphasis on the third and fourth layer of CLA.

How, then, do we deal with the threat aerial drones pose to national security?

 

First Layer: the Litany

The intuitive way to deal with the threat posed by aerial drones, is simply to reinforce the measures and we’ve had in place before. Under the thinking constraints of the first layer, we should basically strive to strengthen police forces, and to provide larger budgets for anti-terrorist operations. In short, we should do just as we did in the past, but more and better.

It’s easy to see why public systems love the litany layer, since these measures create reputation and generate a general feeling that “we’re doing something to deal with the problem”. What’s more, they require extra budget (to be obtained from congress) and make the organization larger along the way. What’s there not to like?

Second Layer: the Systemic View

Under the systemic view we can think about the police forces, and the tools they have to deal with the new problem. It immediately becomes obvious that such tools are sorely lacking. Therefore, we need to improve the system and support the development of new techniques and methodologies to deal with the new threat. We might support the development of anti-drone weapons, for example, or open an entirely new police department dedicated to dealing with drones. Police officers will be trained to deal with aerial drones, so that nothing is left for chance. The judicial and regulatory systems are lending themselves to the struggle at this layer, by issuing highly-regulated licenses to operate aerial drones.

 

ray-gun.jpg
An anti-drone gun. Originally from BattelleInnovations and downloaded from TechTimes

 

Again, we could stop the discussion here and still have a highly popular set of solutions. As we delve deeper into the Worldview layer, however, the opposition starts building up.

Third Layer: the Worldview

When we consider the situation at the worldview layer, we see that the proliferation of aerial drones is simply a by-product of several technological trends: miniaturization and condensation of electronics, sophisticated artificial intelligence (at least in terms of 20-30 years ago) for controlling the rotor blades, and even personalized manufacturing with 3D-printers, so that anyone can construct his or her own personal drone in the garage. All of the above lead to the Aerial Age – in which individuals can explore the sky as they like.

 

2EDCBCF500000578-3336860-image-a-88_1448662571275.jpg
Exploration of the sky is now in the hands of individuals. Image originally from DailyMail India.

 

Looking at the world from this point of view, we immediately see that the vast expected proliferation of aerial drones in the near decade would force us to reconsider our previous worldviews. Should we really focus on local or systemic solutions, rather than preparing ourselves for this new Aerial Age?

We can look even further than that, of course. In a very real way, aerial drones are but a symptom of a more general change in the world. The Aerial Age is but one aspect of the Age of Freedom, or the Age of the Individual. Consider that the power of designing and manufacturing is being taken from nations and granted to individuals via 3D-printers, powerful personal computers, and the internet. As a result of these inventions and others, individuals today hold power that once belonged only to the greatest nations on Earth. The established worldview, in which nations are the sole holders of power is changing.

When one looks at the issue like this, it is clear that such a dramatic change can only be countered or mitigated by dramatic measures. Nations that want to retain their power and prevent terrorist attacks will be forced to break rules that were created long ago, back in the Age of Nations. It is entirely possible that governments and rulers will have to sacrifice their citizens’ privacy, and turn to monitoring their citizens constantly much as the NSA did – and is still doing to some degree. When an individual dissident has the potential to bring harm to thousands and even millions (via synthetic biology, for example), nations can ill afford to take any chances.

What are the myths that such endeavors will disrupt, and what new myths will they be built upon?

Fourth Layer: the Myth

I’ve already identified a few myths that will be disrupted by the new worldview. First and foremost, we will let go of the idea that only a select few can explore the sky. The new myth is that of Shared Sky.

The second myth to be disrupted is that nations hold all the technological power, while terrorists and dissidents are reduced to using crude bombs at best, or pitchforks at worst. This myth is no longer true, and it will be replaced by a myth of Proliferation of Technology.

The third myth to be dismissed is that governments can protect their citizens efficiently with the tools they have in the present. When we have such widespread threats in the Age of Freedom, governments will experience a crisis in governance – unless they turn to monitoring their citizens so closely that any pretense of privacy is lost. And so, it is entirely possible that in many countries we will see the emergence of a new myth: Safety in Exchange for Privacy.

 

Conclusion

Last week I’ve analyzed the issue of aerial drones being used for terrorist attacks, by utilizing the Causal Layered Analysis methodology. When I look at the results, it’s easy to see why many decision makers are reluctant to solve problems at the third and fourth layer – Worldview and Myth. The solutions found in the lower layers – the Litany and the Systemic view – are so much easier to understand and to explain to the public. Regardless, if you want to actually understand the possibilities the future holds in any subject, you must ignore the first two layers in the long term, and focus instead on the large picture.

And with that said – happy new year to one and all!

Forecast: In 2016, Terrorists Will Use Aerial Drones for Terrorist Attacks – But What Will Those Drones Carry?

A year ago I wrote a short chapter for a book about emerging technologies and their impact on security, published by Yuval Ne’eman Workshop for Science, Technology & Security and curated by Deb Housen-Couriel. The chapter focused on drones and the various ways they’re being used in the hands of criminals to smuggle drugs across borders, to identify and raid urban marijuana farms operated by rival gangs, and to smuggle firearms and lifestyle luxury items over prison walls. At the end of the paper I provided a forecast: drones will soon be used by terrorists to kill people.

Well, it looks like the future is catching up with us, since a report from Syria (as covered in Popular Mechanic) has just confirmed that ISIS is using small drones as weapons, albeit not very sophisticated ones. In fact, the terrorists are simply loading the drones with explosives, and trying to smash them on the enemy forces.

That, of course, is hardly surprising to anyone who has studied the use of drones by ISIS. The organization is drawing young and resourceful Muslims from the West, some of whom have expertise with emerging technologies like 3D-printers and aerial drones. These kinds of technologies can be developed today in the garage for a few hundred dollars, so it should not surprise anyone that ISIS is using aerial drones wherever it can.

The Islamic State started using drones in 2014, but they were utilized mainly for media and surveillance purposes. Drones were used to capture some great images from battles, as well as for battlefield reconnaissance. Earlier in 2015, the U.S. has decided that ISIS drones are important enough to be targeted for destruction, and launched an airstrike to destroy a drone and its operators. In other words, the U.S. has spent tens or even hundreds of thousands of dollars in ammunition and fuel for the most expansive and sophisticated aircraft and missiles in the world, in order to destroy a drone likely costing less than one thousand dollars.

ISISDrone320-2102638084060.jpg
ISIS is using drones on the battlefield. Source: Vocativ

All of this evidence is coming in from just this year and the one before it. How can we expect drones to be used by terrorist organizations in 2016?

 

Scenarios for Aerial Drones Terrorist Attacks

In a research presented in 2013, two Dutch researchers from TNO Defence Research summed up four scenarios for malicious use of drones. Two of these scenarios are targeting civilians and would therefore count as terrorist attacks against unarmed civilians.

In the first scenario, a drone with a small machine gun is directed into a stadium, where it opens fire on the crowd. While the drone would most probably crash within a few seconds because of the backlash, the panic caused by the attack would cause many people to trample each other in their flight to safety.

In the second scenario, a drone would be used by terrorists to drop an explosive straight on the head of a politician, in the middle of a public speech. Security forces in the present are essentially helpless in the face of such a threat, and at most can order the politician into hiding as soon as they see a drone in the sky – which is obviously an impractical solution.

Both of the above scenarios have been validated in recent years, albeit in different ways. A drone was illegally flown into a stadium in the middle of a soccer game between Serbia and Albania. Instead of carrying a machine gun, the drone carried the national flag of Greater Albania – which one of the Serbian players promptly ripped down. He was assaulted immediately by the Albanian players, and soon enough the fans stormed the field, trampling over fences and policemen in the process.

 

The second scenario occurred in September 2013, in the midst of an election campaign event in Germany. A drone operated by a 23 years old man was identified taking pictures in the sky. The police ordered the operator to land the drone immediately, and he did just that and crashed the drone – intentionally or not – at the feet of German Chancellor Angela Merkel. If that drone was armed with even a small amount of explosives, the event would’ve ended in a very different fashion.

As you can understand from these examples, aerial drones can easily be used as tools for terrorist attacks. Their potential has not nearly been fulfilled, probably because terrorists are still trying to equip those lightweight drones with enough explosives and shrapnel to make an actual impact. But drones function just as well with other types of ammunition – which can be even scarier than explosives.

Here’s a particularly nasty example: sometime in 2016, in a bustling European city, you are sitting and eating peacefully in a restaurant. You see a drone flashing by, and smile and point at it, when suddenly it makes a sharp turn, dives into the restaurant and floats in the center for a few seconds. Then it sprays all the guests with a red-brown liquid: blood which the terrorists have drawn from a HIV-carrying individual. Just half a liter of blood is more than enough to decorate a room and to cover everyone’s faces. And now imagine that the same happens in ten other restaurants in that city, at the same time.

Would you, as tourists, ever come back to these restaurants? Or to that city? The damages to tourism and to morale would be disastrous – and the terrorists can make all that happen without resorting to the use of any illegal substances or equipment. No explosives at all.

 

Conclusion and Forecast

Here’s today forecast: by the year 2016, if terrorists have their wits about them (and it seems the ISIS ones certainly do, most unfortunately), they will carry out a terrorist attack utilizing drones. They may use the drones for charting out the grounds, or they may actually use the drones to carry explosives or other types of offensive materials. Regardless, drones are such an incredibly useful tool in the hands of individual terrorists that it’s impossible to believe they will not be used somehow.

How can we defend ourselves from drone terrorist attacks? In the next post I will analyze the problem using a foresight methodology called Causal Layered Analysis, in order to get to the bottom of the issue and consider possible solutions.

Till that time, if you find yourself eating in a restaurant when a drone comes in – duck quickly.