Nano-Technology and Magical Cups

When I first read about the invention of the Right Cup, it seemed to me like magic. You fill the cup with water, raise it to your mouth to take a sip – and immediately discover that the water has turned into orange juice. At least, that’s what your senses tell you, and the Isaac Lavi, Right Cup’s inventor, seems to be a master at fooling the senses.

Lavi got the idea for the Right Cup some years ago, when he was diagnoses with diabetes at the age of 30. His new condition meant that he had to let go of all sugary beverages, and was forced to drink only plain water. As an expert in the field of scent marketing, however, Lavi thought up of a new solution to the problem: adding scent molecules to the cup itself, which will trick your nose and brain into thinking that you’re actually drinking fruit-flavored water instead of plain water. This new invention can now be purchased on Indiegogo, and hopefully it even works.

 

right cup.jpg
The Right Cup – fooling you into thinking that plain water tastes like fruit.

 

“My two diabetic parents are drinking from this cup for the last year and a half.” Lavi told me in an e-meeting we had last week, “and I saw that in taste testing in preschool, kids drank from these cups and then asked for more ‘orange juice’. And I told myself that – Wow, it works!”

What does the Right Cup mean for the future?

A Future of Nano-technology

First and foremost, the Right Cup is one result of all the massive investments in nano-technology research made in the last fifteen years.

“Between 2001 and 2013, the U.S. federal government funneled nearly $18 billion into nanotechnology research… [and] The Obama administration requested an additional $1.7 billion for 2014.” Writes Martin Ford in his 2015 book Rise of the Robots. These billions of dollars produced, among other results, new understandings about the release of micro- and nano-particles from polymers, and the ways in which molecules in general react with the receptors in our noses. In short, they enabled the creation of the Right Cup.

There’s a good lesson to be learned here. When our leaders justified their investments in nano-technology, they talked to us about the eradication of cancer via drug delivery mechanisms, or about bridges held by cobwebs of carbon nanotubes. Some of these ideas will be fulfilled, for sure, but before that happens we might all find ourselves enjoying the more mundane benefits of drinking Illusory orange-flavored water. We can never tell exactly where the future will lead us: we can invest in the technology, but eventually innovators and entrepreneurs will take those innovations and put them to unexpected uses.

All the same, if I had to guess I would imagine many other uses for similar ‘Right Cups’. Kids in Africa could use cups or even straws which deliver tastes, smells and even more importantly – therapeutics – directly to their lungs. Consider, for example, a ‘vaccination cup’ that delivers certain antigens to the lungs and thereby creates an immune reaction that could last for years. This idea brings back to mind the Lucky Iron Fish we discussed in a previous post, and shows how small inventions like this one can make a big difference in people’s lives and health.

 

A Future of Self-Reliance

It is already clear that we are rushing headlong into a future of rapid manufacturing, in which people can enjoy services and production processes in their households that were reserved for large factories and offices in the past. We can all make copies of documents today with our printer/scanner instead of going to the store, and can print pictures instead of waiting for them to be developed at a specialized venue. In short, technology is helping us be more geographically self-reliant – we don’t have to travel anymore to enjoy many services, as long as we are connected to the digital world through the internet. The internet provides information, and end-user devices produce the physical result. This trend will only progress further as 3D printers become more widespread in households.

The Right Cup is another example for a future of self-reliance. Instead of going to the supermarket and purchasing orange juice, you can buy the cup just once and it will provide you with flavored water for the next 6-9 months. But why stop here?

Take the Right Cup of a few years ahead and connect it to the internet, and you have the new big product: a programmable cup. This cup will have a cartridge of dozens of scent molecules, each of which can be released at different paces, and in combination with the other scents. You don’t like orange-flavored water? No problem. Just connect the cup to the World Wide Web and download the new set of instructions that will cause the cup to release a different combination of scents so that your water now tastes like cinnamon flavored apple cider, or any other combinations of tastes you can think of – including some that don’t exist today.

 

A Future of Disruption?

As with any innovation and product proposed on crowdfunding platforms, it’s difficult to know whether the Right Cup will stand up to its hype. As of now the project has received more than $100,000 – more than 200% of the goal they put up. Should the Right Cup prove itself taste-wise, it could become an alternative to many light beverages – particularly if it’s cheap and long-lasting enough.

Personally, I don’t see Coca-Cola, Pepsi and orchard owners going into panic anytime soon, and neither does Lavi, who believes that the beverage industry is “much too large and has too many advertising resources for us to compete with them in the initial stages.” All the same, if the stars align just right, our children may opt to drink from their Right Cups instead of buying a bottle of orange juice at the cafeteria. Then we’ll see some panicked executives scrambling around at those beverages giants.

 

Conclusion

It’s still early to divine the full impact the Right Cup could have on our lives, or even whether the product is even working as well as promised. For now, we would do well to focus only on previously identified mega-trends which the product fulfills: the idea of using nano-technology to remake everyday products and imbue them with added properties, and the principle of self-reliance. In the next decade we will see more and more products based on these principles. I daresay that our children are going to be living in a pretty exciting world.

 

Disclaimer: I received no monetary or product compensation for writing this post.

 

First Human Undergoes a Genetic Engineering Treatment to Reverse Aging

Somewhere in the world, in an undisclosed location, an individual is being genetically engineered right now in order to fulfill humanity’s long-time dream: to reverse biological aging, and become young again. The treatment is provided by BioViva, a small company with incredibly large dreams.

BioViva’s CEO, Elizabeth Parrish, announced that the treatment is composed of two different therapies, which have been developed and applied outside the USA. The patient is doing well at the moment, and will be routinely checked and evaluated, so that within twelve months we can expect some preliminary results.

I wrote a lot in the past about the future of radical longevity – i.e. extending the lifespan of ordinary human beings to a hundred years and more. The field excites me – and quite frankly, if you’re not exhilarated about any progress at all that happens in the field of life extension, then you must have completely managed to forget that you’re going to die someday from old age. Yeah, sorry about that.

I contacted Parrish and requested an interview, and she was kind enough to grant it, and to reveal a vision for humanity’s future that is truly radical and fascinating, but may well come true within the next few decades. It is a vision in which humanity largely eradicates old age and diseases, reaches equality between human beings and nations, and dares greatly in order to achieve greatness.

Disclaimer: I edited the quotes by Ms. Parrish for clarity.

Elizabeth Parrish, CEO of BioViva. Image originally from BioViva.

Are They for Real?

After reading all the above, you would be justified asking: is Parrish and her company for real? Are they the real deal, doing actual science instead of general quackery?

While there is no way to know for sure, BioViva’s scientific advisory board contains some highly influential and prestigious scientists in the field of synthetic biology and longevity. It includes Prof. George Church from Harvard Medical School, who is one of the top experts in the world when it comes to genetic engineering. You can also find in there Dr. Aubrey de Grey – an advocate and a prophet of radical longevity.

The treatment enacted by BioViva, while still largely kept under wraps from the public, involves a combination of two different gene therapies: telomerase induction and myostatin inhibition. Telomerase controls the internal clock of each cell, and there’s evidence that myostatin inhibitors can reverse the accumulation of atherosclerotic plaques in veins. “We have that data in animals and in humans, but we need to run a clinical trial.” Says Parrish.

That is where the patient – the one receiving the combined therapy – comes into the picture. Apparently, he is a volunteer who has decided to sacrifice – or enhance – his body for science. While Parrish is reluctant to reveal his identity, she agreed to say that he’s in his 40s, and relatively healthy.

“We believe it is perfect because we could work with someone who was not in the worst stage of illness.” She explains.

The experiments are taking place outside the U.S. since “we didn’t want to deal with legal issues giving the treatment in the US, and it’s less expensive,” as Parrish puts it. If this sounds callous to you, you should know that many other pharmaceutical companies, including industry giants like Merck and Johnson & Johnson, are conducting their research outside the U.S. as well.

In general, Parrish isn’t holding much stock with the FDA and other governmental bodies that attempt to regulate medicine in the United States. “The first amendment protects your right over your body, to do with as you wish.” She states calmly. “I don’t think the government has a right to tell you what to do with your body, as long as it does not affect other people.”

And herein seems to lie one of the most interesting questions for the future of aging: assuming BioViva’s treatment strikes water and succeeds, the public will surely clamor for the new fountain of youth. Will governments worldwide be able to regulate it? Or will this become the great new illegal drug of the new century? At the moment, governments largely endorse medicine that is focuses on repairing the body. Will those governments be as happy to support human enhancement procedures?

“I think that what matters is the public demand, and the government will change its regulation according to public demand.” Says Parrish. And if the government doesn’t budge, then “a lot of people will go outside the country to get the treatment, and it may make some small countries very rich. Israel may become one of these countries, since it is very much ahead in research and very open to biotech. Another place is Japan, which has recently loosened its regulation on experimental medicine.”

The Future of Aging

So far, the medical sciences have mostly focused on repairing the damages being caused to the body over one’s lifetime. Parrish’s solution is much more radical and pro-active: she wants to hold back aging itself, since aging is correlated with so many other diseases. And she’s certain of success.

“The line between enhancement and preventative medicine will be blurry in the future.” She forecasts. “People will be taking gene therapy at younger and younger ages. This will probably be a twenty years process, but I believe that when you get to middle age, gene therapy will be given essentially as immunization to aging.”

This forecast, of course, partly relies on the current experiment having successful outcomes. Parrish is hopeful to see several different effects in the human patient, which include “outward markers like skin becoming youthful again, internal organs becoming healthy, increase in brain function and muscle mass, and better cardiovascular health.” All of the above effects were demonstrated in animal models, but never before in an experiment dedicated specifically to show that we can turn back biological aging.

Parrish expects to have preliminary results in the next twelve months. Until that happens, I take the chance to ask her what their next move will be, should the patient indeed regain some of his youth back. In that case, she says, BioViva would love to take this treatment through the FDA treatment approval process. But there is only one problem: “The FDA doesn’t consider aging as a disease.”

This is a mindset that Parrish has set out to change. Instead of trying to pop a pill for every different disease, we should go deeper and fix the aging process itself. “Every drug the FDA has passed, is still an experiment, and you’ll probably die – usually because of the disease the drug was supposed to take care of.” She says.

Parrish hopes that in twenty years they will get the costs down so that the average citizen would be able to pay for this treatment. “It’s cost effective,” she says, “because the US government is spending trillions for treating age-related diseases. So we hope it would get to everyone.”

As soon as the treatment becomes cheap enough, she will be the first to give it a shot. “I am 44, and I would say I have a chance to enjoy this treatment myself. I would absolutely take it right now, and my whole team would (our medical advisor has undergone the myostatin inhibition treatment five years ago), but the costs of the therapeutic are very high.”

Conclusion

It is almost certain that BioViva’s treatment will fail in the short run. Virtually no experiment in biology or in medicine ever works out the way it should for the first time, and there’s no reason to believe that BioViva’s treatment will be any different. However, we should not view this experiment as a one-time effort, but as one of the cobblestones in the path ahead.

The convictions upon which Parrish makes her case rely on the right of the individual over his or her body, the disillusionment with the power of the government to decide what’s best for the citizen, and moreover – on the realization that we can fix nature and reprogram our body as we desire. And in her words, as they are quoted in the BioViva site: “we want to make you smarter, stronger, faster and more visually accurate, and I think that is a good thing.”

Smarter, stronger, faster… and younger?

Sign me in.

.

.

.

Featured image at top of article is originally from Flickr user Arileu